# Drug Loading of Nanodiamonds for Highly Efficient Drug Delivery and Disease Treatment

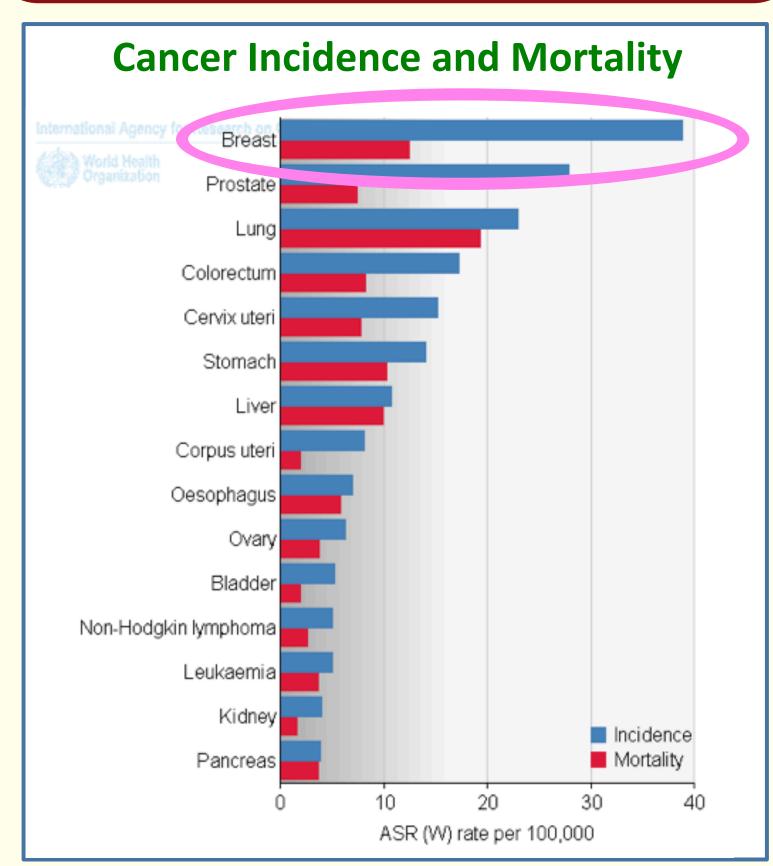
Cynthia Yin, Dong-Keun Lee, Hann Wang, Kangyi Zhang, Kai-Yu Chen, Chih-Ming Ho, Dean Ho\* University of California, Los Angeles, Bioengineering Department

# Overview

#### **Motivations**

- > 1/5 of patient deaths caused by breast cancer are attributed to triple-negative breast cancer, which has few treatment options.
- Administering proper drug dosages is difficult over sustained periods of time.
- > A sudden influx of drugs exposes healthy cells in addition to targeted cells.

#### Methods


- > Select drugs to reduce tumor growth and subsequent cancer proliferation.
- Nanodiamonds offer a revolutionary approach through prolonged drug release.

#### Results

➤ With nanodiamonds, drugs are slowreleased to eliminate cancerous cells while minimizing impact on healthy cells.

# Introduction

# **Breast Cancer Statistics**



Source: GLOBOCAN project by International Agency for Research on Cancer, 2008.

Over 1 million patients diagnosed annually.

# Over 450,000 deaths in year 2008.

# Globally, in women

- most frequently diagnosed cancer
- most common invasive cancer
- > second-most common cause of cancer deaths

# Challenges

# **Most Types of Breast Cancer**

- > overexpress three key receptors:
  - estrogen receptor
  - progesterone receptor
  - Her2/neu receptor

# **Triple-Negative Breast Cancer (TNBC) Cells**

- do not overexpress these three receptors
- do not respond to traditional receptortargeted therapies

# Methods

# **Drug Treatment**

# **Targeted Inhibition by Drugs**

- doxorubicin prevents DNA replication via intercalation and biosynthesis inhibition
- mitoxantrone disrupts DNA synthesis and DNA repair via intercalation

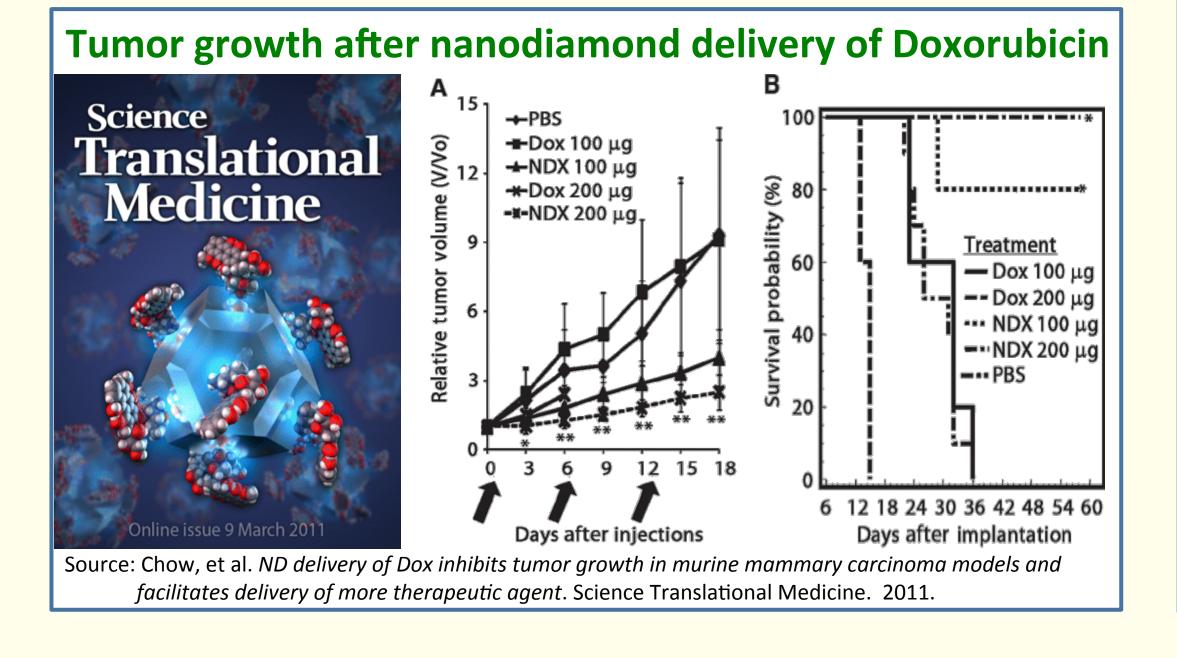
## **Drug Delivery Methods**

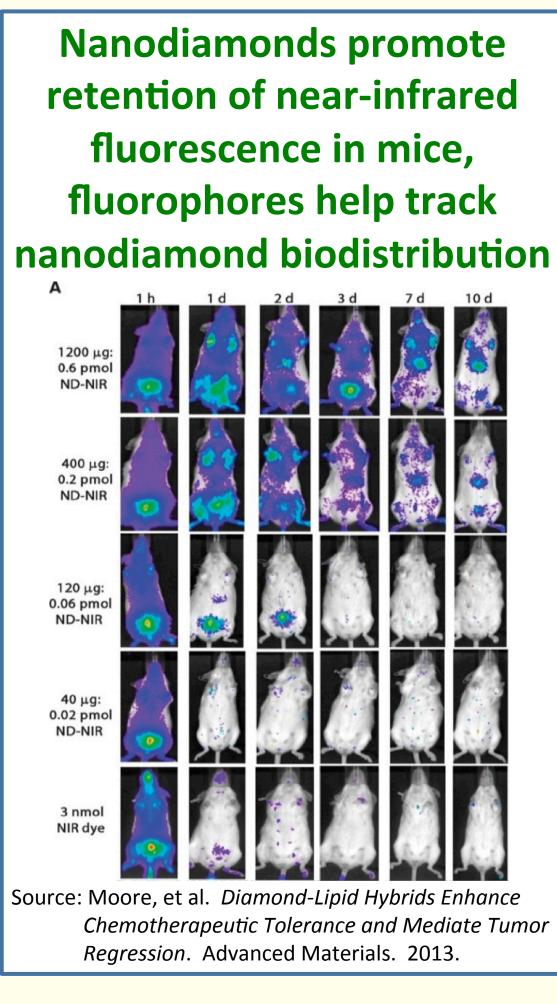
- unmodified drug treatment drugs applied directly to cell cultures in vitro
- drug-loaded nanodiamonds drugs or drug combinations loaded onto nanodiamonds for later release once within cells

# **Drug-Loaded** Nanodiamonds

#### Characteristics

- individual nanodiamonds truncated octahedrons, 2-6 nm in diameter
- aggregated clusters of nanodiamonds - 50-100 nm in diameter


#### **Advantages**


- penetrate targeted cell membranes with load for slow-release
- > can functionalized to carry drugs, DNA, and other molecules
- > can be coupled with fluorophores

# Liposomes encapsulate nanodiamond conjugates Source: Moore, et al. Diamond-Lipid Hybrids Enhance Chemotherapeutic Tolerance and Mediate Tumor Regression. Advanced Materials. 2013.

#### Nanodiamond synthesis schematic drug-loaded plain drug (e.g., Doxorubicin) nanodiamond nanodiamond

# Drug-loaded nanodiamonds suspended in water Source: Applications of Nanodiamonds Toward Medicine. www.n-base.org





# Results

In vitro cell viability studies were conducted for triple-negative breast cancer and multiple control cell lines (breast, lung, heart).

**Cell Viability After Doxorubicin Drug Treatment** 42.72% MDA-MB-231

unmodified drug treatment
drug-loaded nanodiamonds

**Cell Viability After Mitoxantrone Drug Treatment** 2.58% 0.32% -0.74% -1.35% -1.73% H9c2 **MDA-MB-231 Cell Line** unmodified drug treatment
drug-loaded nanodiamonds

**► MCF-10A** – normal epithelial breast cells

**► IMR-90** – normal lung fibroblasts

> H9c2 – normal heart mybolasts

**► MDA-MB-231 – TNBC cells** 

# tumors. Future Work

> Eliminate the need for receptor-targeted

therapies that are ineffective for TNBC

Discussion

unmodified drug treatment – no significant

drug-loaded nanodiamonds – slow-release

of drugs in cancerous cells, equivalent

on other healthy cell types

unmodified drug treatment – more

difference in cell viability between cancerous

healthy breast cells are killed, minimal effect

cancerous cells are dying than equivalent

drug-loaded nanodiamonds – slow-release

Conclusions

Nanodiamonds revolutionize drug treatment.

> Nanodiamonds slow-release loaded drugs

overwhelming cells with an influx of drugs.

into cancerous cells, rather than

Drugs effectively reduce tumor growth.

> Target pathways to prevent cancer

of drugs in cancerous cells, while all healthy

Doxorubicin

Mitoxantrone

and healthy cells

healthy breast cells

cells are killed

# **Broader drug search**

proliferation.

- Treat more cancers and diseases.
- Screen large drug libraries

## **Advanced drug treatment**

- > Test drugs at different concentrations.
- > Drugs at lower dosage levels can reduce the potential side effects and toxicity caused by high concentrations.

## **Drug efficacy measurements**

- > Analyze drug-induced damage through fluorescence and confocal microscopy.
- > Evaluate structural morphologies over time.
- > Track cell displacement and speed throughout treatment.

# **Incorporation into existing biochemical** platforms

> Since nanodiamonds are soluble and biocompatible, they can be fluidly integrated into other biotechnologies.

# Acknowledgements

This work is supported by the National Cancer Institute, National Science Foundation, Wallace H. Coulter Foundation, UCLA, V Foundation for Cancer Research, The Society for Laboratory Automation and Screening (SLAS), and Beckman Coulter Life Sciences.

C. Yin is currently at Stanford University.

\* Corresponding Author: dean.ho@ucla.edu

